
Scattering of light by polydisperse,
randomly oriented, finite circular cylinders

Michael I. Mishchenko, Larry D. Travis, and Andreas Macke

We use the T-matrix method, as described by Mishchenko @Appl. Opt. 32, 4652 ~1993!#, to compute
rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical
aspects of T-matrix computations specific for finite cylinders and present results of benchmark compu-
tations for a simple cylinder model. Then we report results of extensive computations for polydisperse,
randomly oriented cylinders with a refractive index of 1.53 1 0.008i, diameter-to-length ratios of 1y2,
1y1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our
recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare
scattering properties of the two classes of simple convex particles. Despite the significant difference in
shape between the two particle types ~entirely smooth surface for spheroids and sharp rectangular edges
for cylinders!, the comparison shows rather small differences in the integral photometric characteristics
~total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function!
and the phase function. The general patterns of the other elements of the scatteringmatrix for cylinders
and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative
differences can be found in some particular cases. In general, cylinders demonstrate much less shape
dependence of the elements of the scattering matrix than do spheroids. Our computations show that,
like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can
strongly depolarize backscattered light, thus suggesting that backscattering depolarization for non-
spherical particles cannot be universally explained by using only geometric-optics considerations.
© 1996 Optical Society of America
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1. Introduction

In several recent papers we have described the re-
sults of an extensive study of single light scattering
by polydisperse, randomly oriented spheroids.1–4 In
our calculations we used a rigorous and highly effi-
cient method, based on Waterman’s T-matrix ap-
proach,5 and an analytical procedure for averaging
the optical cross sections and the elements of the
Stokes scattering matrix of a nonspherical particle
over the uniform distribution of particle orienta-
tions.1,6 This method is especially well suited to the
computation of light scattering by rotationally sym-
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metric particles, which has been the primary motiva-
tion for choosing spheroids for that study. Also,
because of its high efficiency, the method has enabled
us to compute scattering properties of polydisperse
rather than monodisperse spheroids. As empha-
sized in Refs. 1–4 and 7–9, averaging over sizes not
only provides more realistic modeling of natural par-
ticle ensembles but also washes out the interference
structure and ripple inherent in scattering patterns
for monodisperse particles, thus permittingmeaning-
ful conclusions about the effect of particle shape, size,
and refractive index on light scattering.
Another class of rotationally symmetric nonspheri-

cal particles that can be efficiently studied by using
our computational method are finite circular cylin-
ders. Unlike spheroids, the surface of finite cylin-
ders is not completely smooth but is rather
characterized by sharp, rectangular edges ~Fig. 1!.
These edges make cylinders less regular nonspheri-
cal particles than spheroids and might well be ex-
pected to have an effect on light-scattering
characteristics.10,11 Therefore, it is the aim of this
paper to perform a study of light scattering by poly-
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disperse, randomly oriented, finite cylinders that is
analogous to that accomplished earlier for spheroids
and to report those results here.1–4 In Section 2 we
briefly introduce the necessary terminology, discuss
numerical aspects specific for finite cylinders, and
present results of benchmark computations for a sim-
ple cylinder model. In Section 3, detailed character-
istics derived from extensive computations of light
scattering by polydisperse, randomly oriented, finite
cylinders are reported. These results are compared
with those for surface-equivalent spheres and ran-
domly oriented spheroids, and the effect of particle
shape on light scattering is discussed.

2. Numerical Aspects and Benchmark Results

The basic quantities that fully describe single scat-
tering of light by a small-volume element comprising
polydisperse, rotationally symmetric, randomly ori-
ented particles are the ensemble-averaged extinction,
Cext, and scattering, Csca, cross sections per particle,
and the elements of the Stokes scatteringmatrix hav-
ing the well-known block-diagonal structure12–14:

F~Q! 5 3
F11~Q!
F21~Q!
0
0

F21~Q!
F22~Q!
0
0

0
0

F33~Q!
2F34~Q!

0
0

F34~Q!
F44~Q!

4 . (1)

Here, Q [ @0°, 180°# is the scattering angle, and the
~1, 1! element ~i.e., the phase function! satisfies the

Fig. 1. Comparison of the shape of spheroids and finite circular
cylinders with horizontal-to-vertical dimension ratios of 1y2 ~pro-
late particles!, 1 ~compact particles!, and 2 ~oblate particles!.
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normalization condition

1
4p *

4p

dV F11~Q! 5 1. (2)

We have used the following method to compute
these quantities for polydisperse, randomly oriented
finite cylinders ~for more details, see Refs. 1 and 15!.
The first step was to calculate the T matrix of a
cylinder with respect to the spherical coordinate sys-
tem with the z axis along the axis of cylinder sym-
metry. The accuracy parameter D, as defined by
Eqs. ~18! and ~21! of Ref. 1, was set at 0.001. Then
this T matrix was used in an analytical procedure to
compute the orientationally averaged optical cross
sections and the expansion coefficients appearing in
the following expansions of the elements of the scat-
tering matrix16,17:
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sP00

s~cos Q!, (3)
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s52

smax

b2
sP02

s~cos Q!, (8)

where Pmns~x! are generalized spherical func-
tions.16,18 Because the number of numerically sig-
nificant expansion coefficients, smax, is usually small
and because the generalized spherical functions can
be easily computed for essentially any number of
scattering angles, the expansions of Eqs. ~3!–~8! serve
as a convenient and compact representation of the
scattering matrix. The optical cross sections and
the expansion coefficients were computed for cylin-
ders with equal-surface-area-sphere size parameters
x ranging from 0.05 to 40 with a step size of 0.05.
This step size was found to be small enough to pro-
vide sufficient accuracy in computations for interme-
diate size parameters that used straightforward
spline interpolation. The precomputed monodis-
perse cross sections and expansion coefficients along
with spline interpolation and numerical Gauss inte-
gration were then used to average the optical cross
sections and the expansion coefficients over a modi-
fied power-law size distribution given by

n~x! 5 HCC~x1yx!3

0

for x # x1
for x1 # x # x2,
for x $ x2,

(9)



where n~x!dx is the fraction of particles with size
parameters between x and x 1 dx, and C is a normal-
ization constant such that

*
0

`

dx n~x! 5 1. (10)

Formal parameters x1 and x2 were chosen such
that effective variance neff was fixed at 0.1, thus cor-
responding to a moderately wide size distribution,
while effective size parameter xeff varied from 0.25 to
25 in steps of 0.25. The effective size parameter and
effective variance of a size distribution are defined
as13

xeff 5
1
G *

0

`

dx px3n~x!, (11)

neff 5
1

Gxeff
2 *

0

`

dx~x 2 xeff!
2px2n~x!, (12)

where

G 5 *
0

`

dx px2n~x!, (13)

and they have been shown by Hansen and Travis13
and Mishchenko and Travis3 to be the parameters
that best characterize essentially any plausible size
distribution of spherical as well as nonspherical par-
ticles in the context of light-scattering behavior. We
found that, because of the absence of a sharp drop to
zero at x 5 x1, the modified power-law distribution
used here provides a smoother behavior of the scat-
tering patterns than the standard power-law distri-
bution13 used in our previous papers on polydisperse
spheroidal scattering.1–3 Finally, the size-averaged
expansion coefficients for the 100 effective size pa-
rameters xeff 5 0.25~0.25!25 were used to compute the
elements of the scattering matrix for 181 scattering
angles from 0° to 180° in steps of 1°. In all of our
computations, the refractive index was fixed at
1.53 1 0.008i. This value is typical of dustlike tro-
pospheric aerosols at visible wavelengths19 and is
equal or close to that used in previous detailed stud-
ies of light scattering by Chebyshev particles,8,20
spheroids,1–4 and bispheres.21 These extensive com-
putations were repeated for five cylindrical shapes
with diameter-to-length ratios ofDyL5 1y2, 1y1.4, 1,
1.4, and 2 and were used to create color contour dia-
grams of the elements of the scattering matrix versus
scattering angle and effective size parameter and lin-
ear plots of the optical cross sections versus effective
size parameter. These results are discussed in Sec-
tion 3.
The computation of the T matrix for a rotationally

symmetric particle involves the numerical evaluation
of integrals over zenith angle on the interval @0, p#
@see equations ~39a!–~39d! on pp. 187 and 188 of Ref.
22# by using a Gaussian quadrature formula. For
particles such as spheroids and finite cylinders with a
plane of symmetry perpendicular to the axis of rota-
tion, the integrals over the interval @0, p# can be
reduced to integrals over the interval @0, py2#. How-
ever, unlike spheroids, the shape of a finite cylinder is
not entirely smooth and the use of a single Gaussian
quadrature on the whole interval @0, py2# gives poor
accuracy. We have found that much better results
can be obtained by dividing the interval @0, py2# into
two subintervals @0, arctan~DyL!# and @arctan~DyL!,
py2# and by applying separate Gaussian quadrature
formulas to each of the two subintervals. This sim-
ple approach substantially improves the accuracy of
the T-matrix computations and permits convergent
results for cylinders with significantly larger size pa-
rameters. We have also found that an even further
increase of the maximum convergent size parameter
by a factor of 2–2.5 can be achieved by using extend-
ed-precision rather than double-precision floating-
point computer variables, as described in Ref. 23.
As a consequence, we are able to reach relatively
large size parameters, as demonstrated in Fig. 2,
which shows the elements of the scatteringmatrix for
randomly oriented monodisperse cylinders with a di-
ameter-to-length ratio of 1 and an equal-surface-ar-
ea-sphere size parameter of 70. Note that the
computation of Fig. 2 took 6.5 h of CPU time on an
IBM reduced instruction set computer ~RISC! Model
37T workstation.
We have checked our computer code for calculating

light scattering by finite circular cylinders in fixed
and random orientations in several ways. First, we
have found that computations of the amplitude scat-
tering matrix satisfy the general reciprocity rela-
tion4,12,24 with high accuracy. Second, we have
checked our computations for randomly oriented fi-
nite cylinders versus numerical data10 obtained with
an independent T-matrix code that employed the
standard numerical averaging over orientations and
double-precision floating-point variables.25 We
have compared numerical data for monodisperse cyl-
inders with an equal-surface-area-sphere size param-
eter of 3, a refractive index of 1.53 1 0.006i, and
diameter-to-length ratios of 1, 2y3, 1y2, and 1y3. In
most cases, the agreement in the expansion coeffi-
cients appearing in Eqs. ~3!–~8! was within 60.0002.
Third, we have found that our computations of the
elements of the scattering matrix for randomly ori-
ented cylinders are in full agreement with the gen-
eral equalities3,12,26,27 F12~0! 5 F12~p! 5 F34~0! 5
F34~p! 5 0, F22~0! 5 F33~0!, F22~p! 5 2F33~p!, F11~p!
2 F22~p! 5 F44~p! 2 F33~p!, and F11~0! 2 F22~0! 5
F33~0! 2 F44~0!, as well as with general inequalities
for the elements of the scattering matrix28,29 and for
the expansion coefficients appearing in the expan-
sions of Eqs. ~3!–~8!.30 The fourth test was sug-
gested by the fact that for nonabsorbing particles
~imaginary part of the refractive index equal to zero!
the scattering and extinction cross sections must be
equal, which our T-matrix code reproduces with high
accuracy. Finally, our computations of the optical
cross sections and the phase function for randomly
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Fig. 2. Elements of the scattering matrix versus scattering angle Q for randomly oriented, monodisperse cylinders with a diameter-to-
length ratio of 1, an equal-surface-area-sphere size parameter of 70, and a refractive index of 1.53 1 0.008i.
oriented cylinders with DyL 5 1, surface-equivalent-
sphere size parameter x 5 75, and refractive index
1.394 1 0.00685i have shown excellent agreement
with results of ray-tracing calculations ~cf. Ref. 31!.
Because most numerical methods for computing

nonspherical scattering are complicated and time
consuming, especially for randomly oriented parti-
cles, there is a practical need for accurate numbers in
order to check the accuracy of the corresponding com-
puter codes. Some benchmark results have already
been published for randomly oriented spheroids, Che-
byshev particles, and bispheres with touching and
separated components.6,15,32,33 To the best of our
knowledge, no such results have been published in
digital form for randomly oriented finite cylinders.
We believe that, because of the high accuracy of our
method reinforced by the use of extended-precision
floating-point variables, our computer code is quite
suitable for obtaining numbers accurate enough to
serve as a benchmark. Therefore, we present in Ta-
bles 1 and 2 the expansion coefficients and the ele-
ments of the scattering matrix for a simple model of
Table 1. Expansion Coefficients from Eqs. ~3!–~8! for Randomly Oriented, Monodisperse, Prolate Cylindersa

s a1
s a2

s a3
s a4

s b1
s b2

s

0 1.00000 0.00000 0.00000 0.91444 0.00000 0.00000
1 2.12700 0.00000 0.00000 2.19933 0.00000 0.00000
2 2.34519 3.82053 3.61229 2.26064 0.04799 20.07636
3 1.84205 2.64563 2.68023 1.85961 0.13754 20.22903
4 1.24783 1.73978 1.71411 1.26120 0.22472 20.14598
5 0.70245 0.96265 0.92810 0.70368 0.17209 20.06196
6 0.35272 0.47618 0.45319 0.34921 0.09103 20.03782
7 0.13784 0.18852 0.17917 0.13724 0.05506 20.02318
8 0.04653 0.06405 0.05742 0.04424 0.02485 20.00689
9 0.01197 0.01652 0.01364 0.01061 0.00840 20.00193
10 0.00256 0.00351 0.00257 0.00203 0.00209 20.00031
11 0.00044 0.00060 0.00038 0.00031 0.00040 20.00004
12 0.00006 0.00008 0.00005 0.00004 0.00006 0.00000

aCylinders have a diameter-to-length ratio of 1y2, an equal-surface-area-sphere size parameter of 3, and a refractive index of 1.53 1
0.008i.
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monodisperse, randomly oriented, finite cylinders
with an equal-surface-area-sphere size parameter of
3, a diameter-to-length ratio of DyL 5 0.5, and a
refractive index of 1.53 1 0.008i. Note that the ex-
pansion coefficients with s . 12 are smaller in abso-

lute value than 5 3 1026. The elements of the
scattering matrix are also visualized in Fig. 3. At a
wavelength l 5 py5 mm' 0.62832 mm, the extinction
cross section for this model is Cext 5 0.71596 mm2 and
the scattering cross section is Csca 5 0.69191 mm2.

Fig. 3. Elements of the scattering matrix versus scattering angle Q for randomly oriented, monodisperse, prolate cylinders with a
diameter-to-length ratio of 1y2, an equal-surface-area-sphere size parameter of 3, and a refractive index of 1.53 1 0.008i.

Table 2. Elements of the Scattering Matrix Versus Scattering Angle Q for Randomly Oriented, Monodisperse, Prolate Cylindersa

Q ~deg! F11 F22 F33 F44 F21 F34

0 9.81664 9.77960 9.77960 9.74256 0.00000 0.00000
10 8.99021 8.95155 8.95115 8.91869 20.07119 0.03889
20 6.93400 6.89084 6.88596 6.86619 20.21421 0.12579
30 4.57199 4.52257 4.50638 4.50453 20.29964 0.20075
40 2.66452 2.60869 2.57988 2.59729 20.27277 0.22610
50 1.45651 1.39574 1.36086 1.39494 20.17657 0.20475
60 0.80457 0.74147 0.70836 0.75365 20.07692 0.15849
70 0.47165 0.40924 0.38126 0.43128 20.00699 0.10376
80 0.29492 0.23598 0.21101 0.26015 0.02915 0.04839
90 0.19722 0.14418 0.11514 0.15955 0.03667 20.00067
100 0.14492 0.09995 0.05608 0.09334 0.02421 20.03507
110 0.11928 0.08433 0.01449 0.04287 0.00435 20.04996
120 0.10797 0.08402 20.01926 20.00057 20.01057 20.04787
130 0.10471 0.08999 20.04877 20.03812 20.01478 20.03682
140 0.10898 0.09768 20.07471 20.06644 20.01057 20.02455
150 0.12261 0.10611 20.09642 20.08194 20.00422 20.01464
160 0.14394 0.11514 20.11274 20.08500 20.00047 20.00717
170 0.16451 0.12290 20.12272 20.08140 0.00021 20.00197
180 0.17313 0.12605 20.12605 20.07898 0.00000 0.00000

aCylinders have a diameter-to-length ratio of 1y2, an equal-surface-area-sphere size parameter of 3, and a refractive index of 1.53 1
0.008i.
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An internal convergence test suggests that the cross
sections and the table entries should be accurate to
within a few units in the last digits given.

3. Discussion

A. Optical Cross Sections, Single-Scattering Albedo,
Asymmetry Parameter of the Phase Function, and
Backscattered Fraction

For spheroids, nonspherical–spherical differences in
all light-scattering characteristics tend to zero with
the aspect ratio ~i.e., the ratio of the larger to the
smaller spheroidal axes! approaching 11–4 because
spheroids with an aspect ratio of 1 are spherical par-
ticles. However, circular cylinders with a diameter-
to-length ratio of 1 are already nonspherical particles
with a shape significantly deviating from that of a
sphere ~the ratio of the largest to the smallest cylin-
der dimensions equals 21y2 ' 1.414!. Accordingly,
Figs. 4–8 show that nonspherical–spherical differ-
ences in extinction Cext, scattering Csca, absorption
Cabs, cross sections, single-scattering albedo Ã, and
the asymmetry parameter of the phase function ^cos
Q& 5 a1

1y3 between cylinders with DyL 5 1 and
spheres are already significant. Furthermore, the
differences in Cext,Csca, and ^cosQ& do not necessarily
increase with an increasing cylinder asphericity pa-
rameter defined as ε 5DyL forD. L and ε 5 LyD for
L . D. In fact, at effective size parameters larger
than approximately 7, nonspherical–spherical differ-
ences in the extinction and scattering cross sections
and the asymmetry parameter are smaller for prolate
cylinders with a diameter-to-length ratio of 1y2 than
for more compact cylinders with DyL 5 1, 1y1.4, and
1.4. However, nonspherical–spherical differences in
absorption cross section Cabs and single-scattering
albedo Ã do increase with increasing ε. The absorp-

Fig. 4. Ratio of the extinction cross section for randomly oriented,
polydisperse cylinders with diameter-to-length ratios DyL 5 1,
1y1.4, 1.4, 1y2, and 2 relative to that for surface-equivalent
spheres versus effective size parameter.
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tion cross section systematically decreases with in-
creasing ε, as is the case for spheroids,3,4 whereas Ã
and ^cos Q& increase with increasing ε at size param-
eters larger than 3. We note that maximal non-
spherical–spherical differences in the integral
photometric characteristics occur at effective size pa-
rameters smaller than approximately 5. The same
result was found for randomly oriented spheroids3,4
and is an artifact of comparing surface-equivalent
particles, whereas light-scattering characteristics of
particles smaller than a wavelength depend primar-
ily on particle volume rather than surface area.12,14
At effective size parameters larger than approxi-
mately 10, nonspherical–spherical differences in the

Fig. 5. Ratio of the scattering cross section for randomly oriented
polydisperse cylinders relative to that for surface-equivalent
spheres versus effective size parameter.

Fig. 6. Ratio of the absorption cross section for randomly oriented
polydisperse cylinders relative to that for surface-equivalent
spheres versus effective size parameter.



integral photometric characteristics are relatively
small, thus resembling the case for spheroids.3,4
However, the magnitude of nonspherical–spherical
differences for cylinders can be noticeably larger than
that for aspect-ratio-equivalent spheroids.
The backscattered fraction for isotropically inci-

dent radiation b is defined as34

b 5
1
2p *

0

p

dQF11~Q!Q sin Q. (14)

This quantity enters the two-stream approximation
and is sometimes used to estimate experimentally
the asymmetry parameter of the phase function.35

Fig. 7. Ratio of the single-scattering albedo for randomly oriented
polydisperse cylinders relative to that for surface-equivalent
spheres versus effective size parameter.

Fig. 8. Ratio of the asymmetry parameter of the phase function
for randomly oriented polydisperse cylinders relative to that for
surface-equivalent spheres versus effective size parameter.
Figure 9 shows the ratio b~cylinders!yb~spheres! as
a function of xeff and reveals that spherical–non-
spherical differences in the backscattered fraction
are relatively small. Interestingly, the asymmetry
parameter and the backscattered fraction ratios dis-
played in Figs. 8 and 9 are essentially mirror images
of one another with respect to the horizontal line at
the level of 1, so that for each size parameter the
larger the asymmetry parameter ratio the smaller
the backscattered fraction ratio. This relationship
was first found by Mugnai and Wiscombe20 in their
T-matrix computations for randomly oriented Cheby-
shev particles and then by Mishchenko et al.36 in
computations for polydisperse, randomly oriented
spheroids.

B. Phase Function and Extinction-to-Backscatter Ratio

Figure 10 ~left column, three lower diagrams! shows
ratio ~ of the phase function for polydisperse, ran-
domly oriented cylinders relative to that for surface-
equivalent spheres. The pattern of ~ as a function of
effective size parameter and scattering angle for cyl-
inders strikingly resembles that for spheroids3,4,36
and shows, for size parameters *5, the following dis-
tinct ~ regions in order of increasing scattering angle:
~1! nonsphere ' sphere, ~2! nonsphere . sphere, ~3!
nonsphere , sphere, ~4! nonsphere .. sphere, ~5!
nonsphere ,, sphere ~see also Fig. 11!. The only
substantial difference between the ~ patterns for
spheroids and cylinders is the weak dependence of
the ~ pattern for cylinders on parameter DyL. This
means that the boundaries of the five regions remain
essentially fixed with a varying diameter-to-length
ratio for cylinders but move significantly with chang-
ing shape for spheroids.3,4,36
Region 1 is the region of exact forward scattering

and is least sensitive to particle nonsphericity be-

Fig. 9. Ratio of the backscattered fraction for randomly oriented
polydisperse cylinders relative to that for surface-equivalent
spheres versus effective size parameter.
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Fig. 10. Upper-left diagram shows the logarithm of the phase function versus scattering angle and effective size parameter for polydis-
perse spheres with a refractive index of 1.53 1 0.008i and an effective variance of neff 5 0.1. This diagram can be quantified by using the
left-hand color bar at the bottom of the figure. The three lower diagrams of the left-hand column show the ratio of the phase function for
polydisperse, randomly oriented cylinders with diameter-to-length ratios DyL 5 1, 1y2, and 2 relative to that for surface-equivalent
spheres. These diagrams can be quantified by using the middle color bar. The middle and the right-hand columns show ratios F33yF11
and F44yF11 of the elements of the scattering matrix for polydisperse, surface-equivalent spheres and randomly oriented cylinders. These
diagrams can be quantified by using the right-hand color bar. Note that visible boundaries between discrete colors in the figures and color
bars permit convenient and easy quantification of the respective diagrams by using the white color as the reference.
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cause of the dominant contribution of the diffraction
component, which is essentially the same for surface-
equivalent convex particles.12 The second region, in
which ~ . 1, is the region of near-forward scattering
and becomes more pronounced with increasing as-
phericity for both prolate and oblate cylinders, thus
resembling the case for spheroids.3,4,36 The third re-
gion, where ~ , 1, extends from approximately 20° to
approximately 70° and is more pronounced for oblate
than for prolate cylinders, again in agreement with
computations for prolate versus oblate spheroids.3,4,36
Region 4 is the region of side scattering and extends
from approximately 75° to approximately 155°.
Here ratio ~ can exceed 2.5. Although this value is
smaller than that for surface-equivalent spheroids,
for which ~ can exceed 4,3,4,36 it nonetheless indicates
a strongly enhanced side scattering as opposed to a
wide and deep side-scattering minimum in the phase
function for spherical particles ~upper left diagram of
Fig. 10 and Fig. 11!. Finally, region 5 is the region
of near-backward scattering where values of ~ as
small as 0.3 demonstrate that another major effect of
nonsphericity is to suppress the glory and rainbow
features that are prominent in the phase function for
spherical particles. Our computations indicate,
however, that cylinders with effective size parame-
ters larger than 16 can have larger phase function
values at exactly the backscattering direction than

Fig. 11. Phase function versus scattering angle for polydisperse,
randomly oriented cylinders and surface-equivalent spheres with
effective size parameters xeff 5 5, 10, 15, and 25.
surface-equivalent spheres. This is better illus-
trated in Fig. 12, which shows the ratio of the phase
function at Q 5 180° for cylinders to that for surface-
equivalent spheres. The only exception are oblate
cylinders with a diameter-to-length ratio of 2. Be-
cause this enhanced scattering at Q 5 180° for cyl-
inders occurs at relatively larger size parameters, it
might be explained by using geometric optics consid-
erations, specifically, double internal reflections from
mutually perpendicular facets. It should be noted,
however, that oblate spheroids with aspect ratios less
than approximately 1.4 and size parameters larger
than approximately 12 also produce greater back-
scattering phase function values than surface-equiv-
alent spheres.3,4,36
A backscattering characteristic widely used in lidar

applications37–40 is the extinction-to-backscatter ra-
tio, defined as

Reb 5
Cext

CscaP~180°!
. (15)

This quantity is important because it enters the lidar
equation40 and has to be determined precisely to pro-
vide a high accuracy of aerosol or cloud optical thick-
ness retrievals from lidar measurements. Mie
computations for spheres show that Reb is extremely
sensitive to particle size and refractive index.
Figure 13 demonstrates that the extinction-to-back-
scatter ratio is also strongly shape dependent, so that
ratio Reb~cylinders!yReb~spheres! can be either much
larger or much smaller than 1. Obviously, these re-
sults, as well as those for spheroids,36 strongly sug-
gest that the effect of particle shape should be
explicitly taken into account in analyzing lidar mea-
surements for nonspherical particles. It may also be
noted that laboratory measurements of light scatter-
ing at exactly the backscattering direction are ex-

Fig. 12. Ratio of the phase function at Q 5 180° for randomly
oriented polydisperse cylinders relative to that for surface-equiv-
alent spheres versus effective size parameter.
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tremely difficult, if not impossible, thus greatly
enhancing the value of rigorous theoretical computa-
tions for nonspherical versus spherical particles.

C. Ratio F22yF11
For spheroids with an aspect ratio of 1, i.e., for
spheres, ratio F22yF11 is identically equal to 1. Cyl-
inders with a diameter-to-length ratio of 1 are al-
ready nonspherical particles and show a significant
deviation of this ratio from unity ~Fig. 14, left col-
umn!. For all cylindrical shapes that we have stud-
ied ~i.e., with DyL 5 1y2, 1y1.4, 1, 1.4, and 2!, the
pattern of ratio F22yF11 as a function of effective size
parameter and scattering angle is qualitatively sim-
ilar, showing side-scattering and backscattering min-
ima separated by a vertical bridge of larger F22yF11
values centered near 170°. The depths of the min-
ima are, however, dependent on the diameter-to-
length ratio. The side-scattering minimum is
deeper for compact ~DyL 5 1! and prolate ~DyL , 1!
cylinders, whereas the depth of the back-scattering
minimum increases with increasing cylinder asphe-
ricity. Ratio F22yF11 for spheroids also shows a dis-
tinct backscattering minimum. However, unlike
the case for cylinders, this minimum can become sig-
nificantly deeper with the decreasing aspect ratio of
prolate spheroids.3,4 As for spheroids, ratio F22yF11
for cylinders is nearly shape independent and close to
unity at scattering angles smaller than 90° or at ef-
fective size parameters smaller than 2. A compari-
son of these computations with those reported in
Refs. 3 and 4 suggests that, in general, cylinders
show less variability in ratio F22yF11 with shape than
surface-equivalent spheroids.

D. Ratios F33yF11 and F44yF11
For spheres, ratio F33yF11 is identically equal to ratio
F44yF11 ~see upper-middle and upper-right diagrams

Fig. 13. Ratio of extinction-to-backscatter ratio Reb for randomly
oriented polydisperse cylinders relative to that for surface-equiv-
alent spheres versus effective size parameter.
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in Fig. 10! and has two negative regions at side-
scattering and backscattering angles separated by a
narrow positive branch for size parameters larger
than approximately 10. With the increasing aspect
ratio of spheroids, the side-scattering negative region
weakens and ultimately disappears, while the back-
scattering negative region significantly widens.3,4
Furthermore, ratios F33yF11 and F44yF11 become no-
ticeably different from each other. Also for sphe-
roids, both ratios are strongly aspect ratio dependent
and are substantially different for prolate and oblate
spheroids of the same aspect ratio.
Figure 10 shows that the narrow positive branch

separating the side-scattering and backscattering neg-
ative regions for spheres is already absent for the least
aspherical cylinders with a length-to-diameter ratio of
1 and that the shape dependence of both ratios is
rather weak. As for spheroids, the region of negative
F33yF11 values is wider and deeper than that for F44y
F11. For most scattering angles and size parameters,
F44yF11 is larger than F33yF11. Also, unlike ratio
F33yF11, ratioF44yF11 can be positive at backscattering
angles. However, the shape dependence of the back-
scattering region of positive F44yF11 values may rep-
resent a noticeable difference between cylinders and
spheroids. Specifically, for cylinders this region be-
comes more pronounced with increasing ε, whereas for
prolate spheroids it can become significantly weaker
with an increasing aspect ratio.3,4

E. Linear Polarization ~2F21yF11!
As discussed in Refs. 2–4 and 41, the most remark-
able feature of the degree of linear polarization for
polydisperse, randomly oriented spheroids is a bridge
of positive polarization at scattering angles near 120°
that extends upward from the region of Rayleigh
scattering. This bridge was also observed by Perry
et al.42 in their laboratorymeasurements of light scat-
tering by narrow size distributions of nearly cubically
shaped NaCl particles with mean size parameters
ranging from 3.1 to 19.9. Positive polarization at
side-scattering angles was also found in laboratory
measurements by Sassen and Liou43 for platelike ice
crystals and in measurements by Kuik25 for irregular
quartz grains. Asano and Sato41 discussed the pos-
sible origin of positive polarization at side-scattering
angles for large nonspherical particles by using geo-
metric optics considerations.
Figure 14 ~middle column! shows that randomly ori-

ented polydisperse cylinders do not produce as pro-
nounced a bridge of positive polarization as that found
for spheroids.2–4 Instead, prolate and oblate cylin-
ders with ε 5 2 produce what can be called a bridge of
neutral polarization at approximately the same scat-
tering angles, whereas aspect-ratio-equivalent sphe-
roids produce the bridge of weak but distinctly positive
polarization.2–4 As for spheroids, one of the effects of
increasing ε for cylindrical particles is to make the
overall polarization more neutral and featureless.
Another common effect of increasing asphericity is to
extend the region of Rayleigh polarization to larger
size parameters ~cf. Refs. 2, 10, and 44!.



Fig. 14. Ratios F22yF11, 2F21yF11, and F34yF11 of the elements of the scattering matrix for polydisperse, surface-equivalent spheres and
randomly oriented cylinders with diameter-to-length ratios DyL 5 1, 1y2, and 2. The diagrams in each column should be quantified by
using the color bar below this column.
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It has been demonstrated in Refs. 3 and 4 that the
general pattern of the sign of ratio F34yF11 is the
same for spheres and spheroids, with a broad side-
scattering region of negative values separating two
positive branches at small and large scattering an-
gles. Figure 14 ~right column! suggests that this
general pattern is also typical of polydisperse, ran-
domly oriented cylinders. However, cylinders show
less variability of ratio F34yF11 with particle shape
than do spheroids. The forward-scattering region
seems to be especially shape independent, thus ren-
dering possible the use of Mie theory at small scat-
tering angles for sizing nonspherical particles. This
conclusion is in full agreement with the results of the
above-mentioned laboratory measurements of Perry
et al.42 for wavelength-sized salt particles.

G. Backscattering Depolarization Ratios

Two scattering characteristics that are often consid-
ered sensitive indicators of particle nonsphericity are
the linear, dL, and circular, dC, backscattering depo-
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larization ratios,45–48 defined as

dL 5
F11~180°! 2 F22~180°!
F11~180°! 1 F22~180°!

, (16)

dC 5
F11~180°! 1 F44~180°!
F11~180°! 2 F44~180°!

. (17)

For spherical particles, F22~180°! [ F11~180°! and
F44~180°! [ 2F11~180°! and, as a consequence, both
ratios vanish. For nonspherical particles these
identities do not generally hold, thus causing nonzero
backscattering depolarization ratios. Figures 15
and 16 show dL and dC computed for polydisperse,
randomly oriented polydisperse cylinders. Note
that for any randomly oriented particles having a
plane of symmetry, the linear and circular backscat-
tering depolarization ratios are not independent of
each other but rather obey relationship27

dC 5
2dL

1 2 dL
. (18)

It is seen that for prolate as well as for oblate sphe-
roids both dL and dC substantially deviate from zero,
thus illustrating their usefulness as indicators of
nonsphericity. Previous calculations for spheroids
reported in Refs. 3, 4, and 27 have shown that the
backscattering depolarization ratios cannot be con-
sidered unambiguous indicators of the degree of the
departure of particle shape from that of a sphere,
because nearly spherically shaped spheroids can be
stronger depolarizers than spheroids with much
larger aspect ratios. Interestingly, however, our
computations displayed in Figs. 15 and 16 show that
for size parameters larger than approximately 3, both
dL and dC increase with increasing ε for prolate as
well as for oblate cylinders.
Figures 15 and 16 do demonstrate ~also see Plate 1

Fig. 15. Linear backscattering depolarization ratio versus effec-
tive size parameter for randomly oriented polydisperse cylinders.
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of Ref. 27! that large and even maximum depolariza-
tion values can be reached at size parameters smaller
than 6, i.e., for particles with equivalent-sphere radii
smaller than the wavelength of the incident light.
At such small size parameters the traditional geo-
metric optics concepts of rays, refractions, and reflec-
tions become physically meaningless12 and cannot be
used to explain the mechanism of backscattering de-
polarization. Furthermore, geometric optics com-
pletely fails to explain the strong and complicated
size parameter dependence of the depolarization ra-
tios as demonstrated, e.g., by Plate 1 of Ref. 27. In-
deed, the geometric optics explanation in terms of
multiple internal reflections49,50 implies that dL and
dC are size parameter independent for nonabsorbing
particles and should monotonically decrease with in-
creasing size parameter for absorbing particles.
This is just the opposite of what is seen in Fig. 6 of
Ref. 4, Plate 1 of Ref. 27, Fig. 13 of Ref. 41, and Figs.
15 and 16 of this paper. It thus appears that mul-
tiple internal reflections in nonspherical particles, as
discussed in Refs. 49 and 50, cannot be considered the
universal explanation of backscattering depolariza-
tion. It may well be that the only explanation of
backscattering depolarization for small nonspherical
particles is the lack of spherical symmetry that af-
fects rigorous numerical solutions of Maxwell’s equa-
tions bymeans of corresponding boundary conditions.

4. Summary and Conclusions

In this paper we have used the T-matrix method, as
described in Refs. 1, 6, and 23, to compute light scat-
tering by finite circular cylinders in random orienta-
tion. First we briefly described the computational
scheme for calculating polydisperse optical cross sec-
tions and elements of the scattering matrix, dis-
cussed numerical aspects of T-matrix computations
specific for finite cylinders, and presented results of
benchmark computations for a simple cylinder model

Fig. 16. Circular backscattering depolarization ratio versus effec-
tive size parameter for randomly oriented polydisperse cylinders.



that can be used for checking other rigorous or ap-
proximate methods for computing nonspherical scat-
tering. Then we reported results of extensive
computer calculations for polydisperse, randomly ori-
ented cylinders with diameter-to-length ratios rang-
ing from 1y2 to 2 and a refractive index close to that
of dustlike tropospheric aerosols at visible wave-
lengths. These calculations parallel our recent
studies of light scattering by polydisperse, randomly
oriented spheroids1–4,36 and were used to compare
scattering properties of the two classes of simple con-
vex particles.
Despite the large shape difference between the two

particle types ~completely smooth surface for sphe-
roids and sharp rectangular edges for cylinders!, the
comparison reveals relatively small differences in the
integral photometric characteristics ~total optical
cross sections, single-scattering albedo, and asymme-
try parameter of the phase function! and the phase
function. Like spheroids, cylinders exhibit en-
hanced scattering at middle angles and suppressed
scattering at near-backward directions in comparison
with phase functions for surface-equivalent spheres.
This result supports the conclusion of Refs. 36 and 51
that nonsphericity of dustlike tropospheric aerosols
should be explicitly taken into account in retrieving
aerosol optical thickness from satellite lidar or reflec-
tance measurements. The general patterns of the
other elements of the scattering matrix for cylinders
and aspect-ratio-equivalent spheroids are also qual-
itatively similar, although significant quantitative
differences can be found in some particular cases. In
general, cylinders show much less variability of the
elements of the scattering matrix with shape than
spheroids.
An important result of our computations is that,

like small spheroids and bispheres, cylinders with
surface-equivalent radii less than a wavelength can
strongly depolarize backscattered light. This result
shows the weakness of explanations of backscatter-
ing depolarization for nonspherical particles based
solely on geometric optics considerations.

We are grateful to W. M. F. Wauben for sending us
numerical data for randomly oriented cylinders that
were used for checking the accuracy of our T-matrix
code. This research was supported by the NASA
Earth Observing System Project in providing for the
Earth Observing Scanning Polarimeter instrument
and analysis algorithm development and by the
NASA First International Satellite Cloud Climatol-
ogy Project Regional Experiment III Project.
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